
The Missing Models: A Data-driven Approach to 
Learning How Networks Grow

Carl Kingsford 
Professor


Computational Biology Department

School of Computer Science

Carnegie Mellon University

Robert Patro, Geet Duggal, Emre Sefer, Hao Wang, Darya Filippova, Carl Kingsford (2012). The missing models: A 
data-driven approach for learning how networks grow. Proceedings of the 18th ACM SIGKDD international 
conference on Knowledge discovery and data mining, pages 42-50.

http://kingsfordlab.cbd.cmu.edu/publication/patro-2012-growcode/
http://kingsfordlab.cbd.cmu.edu/publication/patro-2012-growcode/


Networks are everywhere

[Stelzl et al. 2005]

Biological Social Technological

[Bulik-Sullivan & Sullivan 2012] [Peer 1 2011]



Networks are everywhere

[Stelzl et al. 2005]

Biological Social Technological

[Bulik-Sullivan & Sullivan 2012] [Peer 1 2011]

How did these networks grow?



Enter Network Growth Models

[Stelzl et al. 2005]

Biological Social Technological

[Bulik-Sullivan & Sullivan 2012] [Peer 1 2011]



Enter Network Growth Models

[Stelzl et al. 2005]

Biological Social Technological

Forest Fire ? Kronecker?DMC ?

[Bulik-Sullivan & Sullivan 2012] [Peer 1 2011]



Example : DMC Model

Network at time t

Plausible model of protein interaction network growth 
introduced by Vazquez et al. in 2001

Based on gene duplication & divergence



Example of DMC Model

New Node (duplicate)
Parent

[Duplication, Mutation, Complementarity]



Example of DMC Model

New Node (duplicate)
Parent

[Duplication, Mutation, Complementarity]



Example of DMC Model

New Node (duplicate)
Parent

[Duplication, Mutation, Complementarity]

Network at time t+1



Example of DMC Model

[Duplication, Mutation, Complementarity]

Repeated for many steps

[Stelzl et al. 2005]

?

In addition to biologically plausible mechanism, can produce networks with 
similar degree distribution and clustering coeff. as real PPIs



Network Growth Models (NGMs)

Practical

Evaluate statistical significance of observed features
Test algorithms in different contexts

- Varying topological characteristics
- Varying scales

Theoretical

Discover reasons for observed structure
How does topology change over time?
How did the network look in the past?
How will it look in the future? 

Creates “random” graphs with similar topological 
characteristics to the target

“What I Cannot Create, I Do Not Understand”  -- Richard Feynman

Bottom-up generative model of network growth process



(Navlakha & Kingsford,  
PLoS Comp. Biol., 2011)



Core vs. Peripheral Complex Members

Are core members of a protein complex older than peripheral members?

Yes, somewhat: R = 0.37, P < 0.01

Agrees with 3D protein structure analysis (Kim & Marcotte, 2008) looking at age distribution of domains among 
eukaryotic species.

Coreness of a protein = percentage of like-annotated neighbors

x

u

?
½, newer

¾, older

(ignore)



Supervised Learning → Predict Network Models

Extract 
Network 
Features Classifier

SMW

AGV

RDG

RDS

LPA

DMR

DMC
DMC

Inferring network mechanisms: The Drosophila 
melanogaster protein interaction network

Manuel Middendorf, Etay Ziv, and Chris H. Wiggins



Many Existing Growth Models

Erdös-Rényi [1960]

Barabási-Albert [1999]

Multifractal Network Generator [Palla et al. 2010]
Kronecker Model [Leskovec et al. 2010]
Forest Fire Model [Leskovec et al. 2010]
RTG [Akoglu & Faloutsos 2009]

DMC [Vazquez et al. 2001]
Duplication-divergence [Ispolatov et al. 2005]

Varying complexity / accuracy

Repeated application of simple
 growth rule

More complex but highly
flexible models



Many Existing Growth Models

Erdös-Rényi [1960]

Barabási-Albert [1999]

Multifractal Network Generator [Palla et al. 2010]
Kronecker Model [Leskovec et al. 2010]
Forest Fire Model [Leskovec et al. 2010]
RTG [Akoglu & Faloutsos 2009]

DMC [Vazquez et al. 2001]
Duplication-divergence [Ispolatov et al. 2005]

Varying complexity / accuracy

Repeated application of simple
 growth rule

More complex but highly
flexible models

Previous work focused on either

Manually designed growth models

or

Parameterized family of models (possibly with parameter learning)



So What’s New?
Method to automatically learn growth models which is nonparametric & data-driven 

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

Set of network growth models optimized to 
produce graphs similar to the target graph

Target graph

GrowCode 
Optimization



So What’s New?
Method to automatically learn growth models which is nonparametric & data-driven 

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

Set of network growth models optimized to 
produce graphs similar to the target graph

Target graph

GrowCode 
Optimization

Growth model is a
program in the GrowCode language

Instructions represent basic 
topological operations

General similarity measure to capture
desired target characteristics

Pose finding NGMs as optimization over
the space of programs



So What’s New?
Method to automatically learn growth models which is nonparametric & data-driven 

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

Set of network growth models optimized to 
produce graphs similar to the target graph

Target graph

GrowCode 
Optimization

Growth model is a
program in the GrowCode language

Instructions represent basic 
topological operations

General similarity measure to capture
desired target characteristics

Pose finding NGMs as optimization over
the space of programs

This novel representation of NGMs allows us to 
effectively search a large space of potential growth models



Target graph Set of network growth models 
optimized to produce graphs 

similar to the target graph

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

GrowCode 
Optimization



Target graph Set of network growth models 
optimized to produce graphs 

similar to the target graph

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

GrowCode 
Optimization



GrowCode Virtual Machine

u
r0

v
r1 r2

Registers v

u

v

u

Node labels (act as memory)

Current graph

PC

Program

Register-based virtual machine

Node label memory L :  V    V

Runs program iteratively to grow a graph



Machine Instructions

{
{

{

{

Modify graph toplogy

Modify label memory

Program control flow

Manipulate machine registers



Machine Instructions

{
{

{

{

Modify graph toplogy

Modify label memory

Program control flow

Manipulate machine registers

Ever
y se

quence 
of in

stru
ctio

ns is
 a s

em
antica

lly 
vali

d GrowCode p
rogra

m



Influence Instructions



Example GrowCode Program

r0 r1 r2

Program:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

Registers:



Example GrowCode Program

1

r0 r1 r2

Program:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

Registers:



Example GrowCode Program

1 2 1

r0 r1 r2

Program:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

Registers:



Example GrowCode Program

3 2 1

r0 r1 r2

Program:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

Registers:



Example GrowCode Program

2 3 1

r0 r1 r2

Program:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

Registers:



Example GrowCode Program

2 3 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2



Example GrowCode Program

3 2 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2



Example GrowCode Program

3 2 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2



Example GrowCode Program

3 2 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2



Example GrowCode Program

2 1 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2



Example GrowCode Program

4 1 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2
4



Example GrowCode Program

1 4 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2
4



Example GrowCode Program

1 4 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2
4

1

1



Example GrowCode Program

4 1 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2
4

1

1



Example GrowCode Program

4 1 1

r0 r1 r2

Program:

Registers:

Current graph:

Set(1)
Random edge
New node
Swap
Influence neighbors(1.0)
Swap
Attach to influenced

A new node duplicates an existing node u where u is selected proportional to its degree.

1 2

3

2
4

1

1



GrowCode Can Express Existing Models

Forest Fire (new nodes connect to a set of topologically close nodes)
Reproduces scale free distribution, shrinking diameter, 
and densification over time

DMC (models protein duplication and functional divergence events)
Reproduces scale free distribution and clustering 
properties of protein-protein interaction networks (PPI)

Barabási-Albert (models preferential attachment of new nodes)

Reproduces scale free distribution observed in large, real networks

New Node



GrowCode Can Express Existing Models

Forest Fire (new nodes connect to a set of topologically close nodes)
Reproduces scale free distribution, shrinking diameter, 
and densification over time

DMC (models protein duplication and functional divergence events)
Reproduces scale free distribution and clustering 
properties of protein-protein interaction networks (PPI)

GrowCode instructions are reused 
throughout all three models.

Barabási-Albert (models preferential attachment of new nodes)

Reproduces scale free distribution observed in large, real networks

New Node



Existing Models in GrowCode

Algorithm 3 FF
1: Random node ô Put a random node in r0
2: Clear r2 ô Clear r2 to allow full graph influence
3: Influence neighbors(b) ô Breadth-first recursive influence
4: Swap ô Move the random node into r1
5: New node ô Create a new node, u
6: Create edge
7: Attach to influenced ô Connect u to influenced nodes

slightly di↵erent e↵ect in the GrowCode program as compared to
the original DMC model. However, we have verified that graphs
generated by GrowCode DMC and the original DMC have simi-
lar Zipf plots (through visual inspection) and clustering coe�cients
(section 5.3), which are the two features on which the authors of the
DMC model focused. Further, Algorithm 2 produces graphs with
similar Zipf plots and clustering coe�cients as those observed in
the yeast protein interaction network. Thus, despite the subtle dif-
ferences, the GrowCode algorithm 2 maintains the essential char-
acteristics of the original growth model.

3.3 Forest fire
The forest fire (FF) model [17] was first introduced to model

scale-free degree distributions (of both in-degree and out-degree) as
well as shrinking diameter and densification over time (under cer-
tain parameter regimes). The FF model is very intuitive and easy
to explain from the perspective of network growth. We present
a model that has been slightly altered to apply to undirected net-
works. When a new node u enters the network, it chooses an exist-
ing node v uniformly at random to act as an ambassador, and the
edge tu, vu is added to the network. Next, a number n is drawn
from a geometric distribution with probability b of success, and n
neighbors of v are chosen to be burned. An edge is added from u
to each of these burned nodes, and the process of selecting a set of
neighbors and burning them is repeated recursively.

Algorithm 3 shows a GrowCode program that encodes the forest
fire model. We observe that it produces networks with the same
essential characteristics as those produced via the forest fire model.
In particular, the networks produced by algorithm 3 exhibit (for
certain parameter ranges of b) shrinking diameter and densification
power law during network growth.

4. LEARNING GROWCODE MODELS
One of the benefits of expressing growth models as a set of in-

structions is that we can now formalize the problem of learning a
growth model as an optimization problem over the space of Grow-
Code programs. Given a set of graph features, we use genetic pro-
gramming techniques to learn a GrowCode program that produces
graphs closely approximating these features. These graph proper-
ties are encoded into the fitness function of an individual Grow-
Code program. The goal of our learning procedure is not to re-
cover previously proposed growth models, but rather to learn pro-
grams that grow graphs that are representative of a particular class
of graphs as measured under specific similarity measures.

4.1 Constructing a fitness function
We define a feature collection x “ rx1, x2, . . . , xms to be a m-long

vector of features where each property xi may be a scalar (such as
clustering coe�cient) or a vector (such as a sampling of the graph’s
e↵ective diameter during its growth process). The goal of the fea-
ture collection is to represent the essential graph characteristics
that we want our growth model to match. We define a (possibly
weighted) similarity measure between any two feature collections

spxi, x jq, which are of the same size, as:

spxi, x jq “
mÿ

`“1

w`s`pxi
`, x

j
`q, (1)

where s`p¨, ¨q is a user-defined measure of similarity between the
`th features of the collections. This measure of similarity can be
as simple as the inverse of the di↵erence between the two features
(e.g. for scalar features), or it could be as complex as a measure
of the similarity of distributions (for more complex features). The
only requirement on s`pxi

`, x
j
`q is that it should be a monotonically

non-decreasing function of similarity between the two features, and
it should achieve its maximum value when xi

` “ x j
`. The w` allow

one to weight each feature di↵erently, forcing the optimization pro-
cedure to prefer some features over the others. In the experiments
reported here, w` “ 1 for all `.

We define the fitness of a GrowCode program based on eq. (1).
Let xT be a target feature collection and let xP be a random vari-
able representing the feature collection for the graph generated by
the randomized program P. Then we can define our problem as the
search for P˚ such that:

P˚ “ arg max
P
ErspxP, xTqs, (2)

where the expectation is taken over various runs of P. That is, we
seek the program P˚ such that the graph generated by P˚ are ex-
pected to have features most similar to those given by xT as mea-
sured by the similarity function sp¨, ¨q. This optimization prob-
lem is di�cult given the size of the space of potential programs.
To tackle this problem e↵ectively, we adopt genetic programming
techniques which have proven e↵ective in similarly di�cult opti-
mization scenarios.

4.2 Optimization with genetic algorithms
We use the ECJ package [18] to perform the optimization, and

we use its abilities to evaluate individuals within a generation in
parallel, customize the selection methods and breeding architecture
for multiple sub-populations, perform NSGA-II multi-objective op-
timization [8], and handle arbitrary representations of fixed and
variable length genomes.

Each individual encodes a program. At each generation, we eval-
uate the fitness for all individuals in the fixed-size population. Each
program’s fitness is calculated by running it for k iterations, and
comparing its feature vector xP against the target set of features.
This is repeated some number M times, and the results are aver-
aged, so that the fitness of program P is:

F pPq “ avg spxP, xTq. (3)

Alternatively, we can average each s`pxi
`, x

j
`q in eq. (1) as a separate

objective, and employ a multi-objective optimization strategy (e.g.
NSGA-II) [8].

When breeding individual programs, a two-point crossover op-
eration allows the programs to mix with each other thus varying
their contents and length. At the end of each generation, individ-
uals compete in a tournament of successive comparisons of two
randomly chosen individuals, where winners are chosen determin-
istically based on the higher fitness value. Winners of the tourna-
ment become members of the subsequent population. Individuals
are drawn with replacement and can thus be replicated in the sub-
sequent population. More fit individuals are more likely to win
tournaments, making “elite” members more likely to survive into
the next generation.



Target graph Set of network growth models 
optimized to produce graphs 

similar to the target graph

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

GrowCode 
Optimization



Target graph Set of network growth models 
optimized to produce graphs 

similar to the target graph

Random graphs

GrowCode
Virtual 

MachineGrowCode program =
network growth model

GrowCode 
Optimization



xP =

xT=

Characterize a graph with a user-defined feature vector

e.g.

assortativity
clustering coeff.

scale-free coeff.
density

Feature vector for graph generated by 
GrowCode Prog.

Feature vector of  “target” graph

Want models (programs) that produce graphs whose feature 
vectors have high expected similarity with the target feature vector

Finding a NGM becomes a search problem



Learning Models for
Real-World Networks



GrowCode Better Matches Pairs of Features

GWAS co-authorship network PPI Network

Properties of Real Networks Ensembles of Random Graphs



GrowCode Better Matches Triplets of Features

Internet Router Network



GrowCode Better Matches Triplets of Features

Internet Router Network

Properties of Real Networks



GrowCode Better Matches Triplets of Features

Internet Router Network

Properties of Real Networks

Social, technological, and biological!



Random Walk with Restarts

(c)

; RWR - Random Walk with Restart
; r3 is the start node; r2 is the new node; r1 is the current node
RNODE      ; r1 := random start node
SAVE          ; r3 := r1 
COPY  ; copy r1 from an existing node
ZERO  ; remove all of r1s copied edge
SWAP  ; r2 := r1
STEP 100    ; do the random walk with restarts
   INC           ; increment attribute for node r1
   SIFA != 5   ; skip next statment if attribute for r1 != 50
   CREATE    ; create an edge between r1 and r2
   NEIGH        ; move to a random neighbor
   SCOIN 0.7  ; skip next statment if coin < r
   LOAD         ; r1 = r3 == start node

(a) (b)

Spectra of adjacency matrix of (1) RWR model and  
(2) learned/optimized model

(c)

; RWR - Random Walk with Restart
; r3 is the start node; r2 is the new node; r1 is the current node
RNODE      ; r1 := random start node
SAVE          ; r3 := r1 
COPY  ; copy r1 from an existing node
ZERO  ; remove all of r1s copied edge
SWAP  ; r2 := r1
STEP 100    ; do the random walk with restarts
   INC           ; increment attribute for node r1
   SIFA != 5   ; skip next statment if attribute for r1 != 50
   CREATE    ; create an edge between r1 and r2
   NEIGH        ; move to a random neighbor
   SCOIN 0.7  ; skip next statment if coin < r
   LOAD         ; r1 = r3 == start node

(a) (b)

growcode model of network 
evolution



Conclusion
Novel representation of network growth models

Can express many existing models & define new ones

Automated process for learning models that grow
graphs desired topological properties

Learned models can outperform (match better) than 
manually designed models with optimal parameters

Basic building blocks are interpretable -- entire model may 
not be

Direction for future work -- analyze programs to find 
interpretable motifs



Questions
• Accuracy: Can something be proved about the deviation between the 

distribution of graphs produced by a GrowCode* program and a hand-designed 
mechanism?

• Completeness: Can a set of properties and a GrowCode* language be defined 
such that one could show that any graph growth model with these properties can 
be expressed with GrowCode*?

• Efficiency:  Is there a better optimization procedure than a GA?

• Regularization: How can one enforce “simple” models are determined?

• Interpretation: Can we mine learned programs to identify mechanism 
“motifs”?

• Complexity: Can we define a way to quantify how “easy” a property is to 
generate?



Thanks

[CCF-1053918, EF-0849899, and IIS-0812111]

[1R21AI085376] Institute for Advanced Studies 
New Frontiers Award

Research Fellowship to CK

Saturday, August 11, 12


